Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
Q DP problem:
The TRS P consists of the following rules:
U212(ackout1(X), Y) -> ACKIN2(Y, X)
ACKIN2(s1(X), s1(Y)) -> ACKIN2(s1(X), Y)
ACKIN2(s1(X), 0) -> U111(ackin2(X, s1(0)))
ACKIN2(s1(X), s1(Y)) -> U212(ackin2(s1(X), Y), X)
ACKIN2(s1(X), 0) -> ACKIN2(X, s1(0))
U212(ackout1(X), Y) -> U221(ackin2(Y, X))
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U212(ackout1(X), Y) -> ACKIN2(Y, X)
ACKIN2(s1(X), s1(Y)) -> ACKIN2(s1(X), Y)
ACKIN2(s1(X), 0) -> U111(ackin2(X, s1(0)))
ACKIN2(s1(X), s1(Y)) -> U212(ackin2(s1(X), Y), X)
ACKIN2(s1(X), 0) -> ACKIN2(X, s1(0))
U212(ackout1(X), Y) -> U221(ackin2(Y, X))
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 2 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
ACKIN2(s1(X), s1(Y)) -> ACKIN2(s1(X), Y)
U212(ackout1(X), Y) -> ACKIN2(Y, X)
ACKIN2(s1(X), s1(Y)) -> U212(ackin2(s1(X), Y), X)
ACKIN2(s1(X), 0) -> ACKIN2(X, s1(0))
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACKIN2(s1(X), s1(Y)) -> U212(ackin2(s1(X), Y), X)
ACKIN2(s1(X), 0) -> ACKIN2(X, s1(0))
Used argument filtering: ACKIN2(x1, x2) = x1
s1(x1) = s1(x1)
U212(x1, x2) = x2
ackin2(x1, x2) = ackin
0 = 0
u111(x1) = u11
u212(x1, x2) = u21
ackout1(x1) = ackout
u221(x1) = u22
Used ordering: Quasi Precedence:
[ackin, u21, u22] > [u11, ackout]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U212(ackout1(X), Y) -> ACKIN2(Y, X)
ACKIN2(s1(X), s1(Y)) -> ACKIN2(s1(X), Y)
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
ACKIN2(s1(X), s1(Y)) -> ACKIN2(s1(X), Y)
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACKIN2(s1(X), s1(Y)) -> ACKIN2(s1(X), Y)
Used argument filtering: ACKIN2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ackin2(0, X) -> ackout1(s1(X))
ackin2(s1(X), 0) -> u111(ackin2(X, s1(0)))
u111(ackout1(X)) -> ackout1(X)
ackin2(s1(X), s1(Y)) -> u212(ackin2(s1(X), Y), X)
u212(ackout1(X), Y) -> u221(ackin2(Y, X))
u221(ackout1(X)) -> ackout1(X)
The set Q consists of the following terms:
ackin2(0, x0)
ackin2(s1(x0), 0)
u111(ackout1(x0))
ackin2(s1(x0), s1(x1))
u212(ackout1(x0), x1)
u221(ackout1(x0))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.